皇冠网上投注-皇冠网全讯网

學術活動   NAVIGATION

Synthetic Biology 2.0: the Dawn of a New Era

時間:2023-10-07 來源: 作者: 攝影: 編輯:趙蕾 上傳:

報告人:Huimin Zhao教授

報告人單位:University of Illinois at Urbana-Champaign

報告時間:2023年10月08日(星期日) 10:00-11:00

會議地點:生物與制藥工程學院(尚德樓A1)一樓報告廳

舉辦單位:材料化學工程國家重點實驗室、生工學科群、學科建設處

報告人簡介:

Dr. Huimin Zhao is the Steven L. Miller Chair of chemical and biomolecular engineering at the University of Illinois at Urbana-Champaign (UIUC), director of NSF AI Institute for Molecule Synthesis (moleculemaker.org), and Editor in Chief of ACS Synthetic Biology. He received his B.S. degree in Biology from the University of Science and Technology of China in 1992 and his Ph.D. degree in Chemistry from the California Institute of Technology in 1998 under the guidance of Nobel Laureate Dr. Frances Arnold. Prior to joining UIUC in 2000, he was a project leader at the Industrial Biotechnology Laboratory of the Dow Chemical Company. He was promoted to full professor in 2008. Dr. Zhao has authored and co-authored over 420 research articles and over 30 issued and pending patent applications. In addition, he has given over 470 plenary, keynote, or invited lectures. Thirty-six (36) of his former graduate students and postdocs became professors or principal investigators around the world. Dr. Zhao received numerous research and teaching awards and honors such as AIChE FP&B Division Award, ECI Enzyme Engineering Award, ACS Marvin Johnson Award, and SIMB Charles Thom Award. His primary research interests are in the development and applications of synthetic biology, machine learning, and laboratory automation tools to address society’s most daunting challenges in health, energy, and sustainability.

報告摘要:

Synthetic biology aims to design novel or improved biological systems using engineering principles, which has broad applications in medical, chemical, food, and agricultural industries. Thanks to the rapid advances in DNA sequencing and synthesis, genome editing, artificial intelligence/machine learning (AI/ML), and laboratory automation in the past two decades, synthetic biology has entered a new phase of exponential growth. In this talk, I will highlight our recent work on the development of a biofoundry named Illinois Biological Foundry for Advanced Biomanufacturing (iBioFAB) and AI/ML tools for synthetic biology applications and the creation of enzymes with new-to-nature activities. Examples include but are not limited to: (1) BioAutomata: a self-driving biofoundry for pathway engineering and protein engineering, (2) ECNet: an AI tool for enzyme engineering, (3) CLEAN: an AI tool for enzyme function prediction, (4) FAST-RiPP & FAST-NPS: an automated and scalable platform for rapid discovery of bioactive natural products, and (5) engineered photoenzymes with new-to-nature reactivity for asymmetric synthesis.

審核:李莎

學術活動
百家乐官网赌博技巧网| 百家乐官网网投注| 大发888娱乐场漏洞| 百家乐官网群html| 百家乐免费改| 百家乐官网大天堂| 百家乐英皇娱乐平台| 菲律宾百家乐官网娱乐网| 中原百家乐的玩法技巧和规则| 百家乐官网台布兄弟 | 苗栗市| 滁州市| 长赢百家乐赌徒| 百家乐官网龙虎台布多少钱| 澳门博彩公司| 百家乐翻天片尾曲| 百家乐官网电脑赌博| 威尼斯人娱乐城网址| 百家乐官网实战玩法| 皇冠百家乐| 百家乐技巧开户| 真人百家乐打法| 百家乐官网园小区户型图| 大发888登陆| 线上百家乐赌法| 百家乐官网娱乐网址| 宕昌县| 大发888娱乐城dafa888dafa8| 百家乐玩法皇冠现金网| 百家乐官网庄闲预测| 枞阳县| 足球竞猜| 大发888信誉net| 路虎百家乐的玩法技巧和规则| 自贡百家乐官网赌| 百家乐官网筹码皇冠| 国美百家乐的玩法技巧和规则| 澳门赌百家乐官网的玩法技巧和规则 | 澳门百家乐官网网上赌博| bet365信誉好吗| 老虎机在线ap888|